Segment Anything Model 2(SAM 2)在传统视频目标分割任务大放异彩,引起了众多关注。然而,港中文和上海 AI Lab 的研究团队发现 SAM 2 的贪婪选择策略容易陷入「错误累积」的问题,即一次错误的分割掩码选择将影响后续帧的分割结果,导致整个视频分割性能的下降。这个问题在长视频分割任务中显得更加严重。
来自主题: AI技术研报
6553 点击 2024-11-05 14:53
Segment Anything Model 2(SAM 2)在传统视频目标分割任务大放异彩,引起了众多关注。然而,港中文和上海 AI Lab 的研究团队发现 SAM 2 的贪婪选择策略容易陷入「错误累积」的问题,即一次错误的分割掩码选择将影响后续帧的分割结果,导致整个视频分割性能的下降。这个问题在长视频分割任务中显得更加严重。
免训练多模态分割领域有了新突破!
Meta又双叒开源了!继去年初代SAM掀翻CV圈之后,SAM 2也完成了终极进化,不仅能分割图像,最惊艳的是还能分割视频。这下,CV可能就真的不存在了。
还记得 Meta 的「分割一切模型」吗?这个模型在去年 4 月发布,被很多人认为是颠覆传统 CV 任务的研究。